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Background

• History: 5+ years LMI and OSD/PA&E research project

• Objective: Improve development program cost estimates
– Identify and investigate new methods for cost estimation
– Build tools and models that implement these methods

• Motivation: Development program cost estimation is notoriously 
difficult
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Background

• Generalized Activity Network (GAN) models increasingly used 
by cost analysts

• Recent Applications
– Air Traffic Management (ATM) system development
– Spiral Development Programs
– Missile Defense Systems 
– Satellite Development Schedules
– Army Weapon System Test and Evaluation Costs

• Growing use of GAN models necessitates evaluation 
– Performance vs. traditional regression methods
– Appropriate Use of GAN models
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What is a GAN?

A Generalized Activity Network (GAN) is…
• A cyclical directed process modeling diagram (an extension of 

PERT)
• The modeling capabilities of GANs include:
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What is a GAN?

A GAN has as its basic element an activity (u)

1 2
u       (pu, tu, hu, cu, ...)

pu ≡ probability that arc “u” executes
tu ≡ u’s execution time
hu(tu) ≡ probability density function for t
cu ≡ u’s cost: may depend upon t
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GAN Junctions

GAN Receivers GAN Transmitters
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GAN-Based Simulations
We convert GANs…

Start
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End
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…into simulations…

Simulate

Our research shows that these simulations provide
a surprising amount of insight, even with few inputs

…that can compute completion time and 
cost for complex spending programs.
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How GANS are Built and Calibrated

• Modeling process:
– Build a network diagram (GAN) to describe possible program 

execution paths
– Estimate parameters: need random distributions for task durations
– Require probabilities for feedback loops or other event outcomes
– Create a discrete-event simulation for that network 

• Parameter estimation: 
– Task durations can be based off:

• Build-up estimates, calibration with historical data, or engineering 
judgment

• Usually apply a Weibull distribution (Gladstone-Miller 2002) to 
deterministic estimate

– Feedback probabilities can be calibrated with historical data from 
similar programs or engineering judgment
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Example Application

Repeat-Until-Pass Test GAN
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Example: Repeat-Until-Pass Test GAN

• Durations for Preparation and Testing:
– Uniform Random Variables
– Expectation 1 day & Range 1 day: U(0.5,1.5)

• Durations for Recovery from Test Failure:
– Minor Failure: U(0.5,1.5) Exp. Value: 1 day
– Moderate Failure: U(1.25,2.75) Exp. Value: 2 days
– Major Failure: U(2.0, 4.0) Exp. Value: 3 days
– Note: Dispersion also increases with failure severity

• Duration for activities following success is 0
• Psuccess =  Pfailure = .5
• Pmin = .8 ; Pmod = Pmaj = .1

– 10% of all failures are moderate, and 10% of all failures are major
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Example: Repeat-Until-Pass Test GAN
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• Performed Monte Carlo Simulation (5000 Draws)
• Expected Duration for Test Success: 2.8 days
• Large right-tail dispersion due to geometric distribution from 

inclusion of a probability of test failure
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GAN Advantages

• Hierarchical
• Flexible
• Model iterative processes
• Can provide more information than simple time/cost estimates

– Complete distribution; eliminates need for separate risk analysis
– Identify potential problem activities for risk mitigation

• Often provide useful insight during both design (diagramming) 
and analysis (simulation, analytic equations) phases

• Often “force” analyst to consider program/process from more 
detailed perspective
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GAN Advantages

• Discipline of creating one helps identify/clarify critical issues up 
front

• Can calibrate model to estimate
– Time at completion
– Cost at completion
– Quality of product at completion

• Shows how activities interact (through GAN junctions) 
• Takes mystery away from integration processes
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GAN Disadvantages

• Requires large amount of detailed program data
– Data necessary for calibration
– Calibration necessary for meaningful cost/schedule estimates

• “Uniqueness” problem
– Data cannot be used for calibration if too program-specific
– Breadth of data as important as depth of data

• May suffer from subjectivity of expert opinion data
– Problem of all bottom-up estimates

• “Familiarity” problem:  Although growing, GANs currently not 
widely used for cost analysis
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GAN vs. SER Performance

• Increasing use of GANs for schedule estimation
• GANs bridge gap between bottom-up and parametric methods

– Bottom-up methods
• Detailed but doesn’t consider risk and uncertainty
• Requires extensive data
• Almost always low

– Parametric methods: Schedule Estimation Relationships (SERs)
• Requires little data
• Provides no managerial information beyond estimate

• GANs may provide additional information but what about 
predictive performance?
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GAN vs. SER Performance: Method

• Tasked to compare relative performance of GANs & SERs
• Identify system for case study

– Fielded system
– Data on initial schedule at contract award

• Obtain published commodity specific SERs
• Construct GAN model for system development from initial 

schedule
• Predict schedule using each approach using data from contract 

award
• Compare to actual schedule at completion
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Case Study: Coriolis Satellite

• Joint Air Force & Navy Development
• Two independent payloads

– Air Force: Solar Mass Ejection Imager (SMEI)
– Navy: Windsat
– Scientific/Sensor Mission
– Proof of concept for future National Polar-orbiting Operational 

Environmental Satellite System (NPOESS) missions

• COTS/Heritage Bus: SpectrumAstro SA200-HP
• Initial schedule data reconstructed at ATP
• Successfully launched – can compare predicted to actual

SA-200HP
Bus

Windsat
Payload 

SMEI 
Payload
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Satellite GAN Models

• Satellite development “good fit” for GAN modeling
• Bus and payloads almost always developed in parallel
• Satellite development process well understood

– Initial simulations can populate baseline model
– Refine GAN model as program develops or more data becomes 

available

• Extensive series of well-defined test and integration activities
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Satellite Development Process
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Coriolis Schedule at Contract Award

• Schedule in Fiscal Years
• Coriolis planned development schedule

– 33-months
– Spans Authority To Proceed  (ATP) to Launch
– Expected 12/15/01 Launch Date
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Published Satellite SERs

• “Harmon, B. and Om N., (1993), “Assessing Acquisition 
Schedules for Unmanned Spacecraft,” IDA Paper P-2766, 
Institute for Defense Analysis, Alexandria, Virginia

• Contains satellite SERs from two Planning Research Corp. 
(PRC) studies: 1981 & 1990
– PRC-D-2148 (1981): NASA data
– PRC-D-2337-H (1990): NASA Cost Model (NASCOM) database

• NASA and DoD satellites and unmanned space vehicles

• Burgess, Erik, (2004) “Time-Phasing Methods and Metrics” 37th

Annual DoD Cost Analysis Symposium, Williamsburg, VA

• NRO and AF Dataset
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PRC Models (1981 & 1990)

• Model 1 (1981):
055.134.31 FULLWmonthsinTime =

– WFull =  launch weight of spacecraft
– Model not statistically valid

02.;21 2 == RN

57.;18 2 == RN

238.173.8 DRYWmonthsinTime =• Model 2 (1990):

– WDry = dry weight of spacecraft
– Newer data set
– Reasonable R2 given bivariate model specification
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IDA Models (1993)

• Model 3: Full data set of unmanned orbiting spacecraft

EXPRCOMMERNAVSENSORDESLIFPowerBOLstDel 381.1751.513.1585.1)()(637.1 177.508.=

93.2 =R 90.2 =RAdjusted 116.=SEE
21=N007.1=AdjustmentIntercept

– BOL = Beginning of Life Power (Watts)
– DESLIF = Design Life in Months
– SENSOR, NAV, COMMER, and EXPR are dummy variables for 

whether the spacecraft are primarily sensor or scientific instrument, 
navigation, commercial, or experimental/scientific spacecraft

• High goodness-of-fit
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IDA Models (1993)

• Model 4: Data restricted to sensor unmanned orbiting spacecraft

479.295.21 PowerBOLstDEL =

156.=SEE85.2 =R 83.2 =RAdjusted
10=N012.1=AdjustmentIntercept

– BOL = Beginning of Life Power (Watts)

• Full model (Model 3) dominates sensor only model
– Reduced goodness-of-fit
– Fewer observations
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Burgess Model (2004)

• Model 5: (2004) Time to First Launch Availability (TT1L)

.406.TT1L =17.0 + W0.87 DRY (DESLIF*PYLD)
.136

56=N69.2 =Pearson’s R 25.=SEE

– WDry = dry weight of spacecraft
– DESLIF = Design Life in Months
– PYLD = Number of Payloads with Physically Distinct Hardware and 

Different Users 

• Most recent data set; contains NRO and AF satellites
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Coriolis SER Input Parameters

FULLW 1801.2 SENSOR 1

DRYW 1620.4 NAV 0

PowerBOL 1209 COMMER 0

DESLIF 36 EXPR 0

PYLD 2
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Coriolis GAN
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• GAN directly constructed from initial Coriolis schedule
– Activity arc durations modeled as Weibull distributions (Gladstone-

Miller method)
– Most likely durations are initial planned durations
– Risk levels assigned by

• Previous research with satellite programs (Environmental Testing, LBT)
• Publicly available press releases dated by ATP
• Consultation with vendors
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Weibull Distributions for Time Estimates

• OSD PA&E has had success using 
these distributions to predict 
durations

• Can describe a Weibull distribution 
by specifying its mode and a risk 
level

Time (t)

P(
t)

Probability Density Function of
Weibull Random Variable

Time (t)

P(
t)

Probability Density Function of
Weibull Random Variable

Mode indicates 
most likely 
duration

More risk means greater 
likelihood that duration 
exceeds mode (greater 
skew in PDF)
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Weibull Distributions for Time Estimates

Set Typical of More Mature 
Schedules

Set Typical of Less Mature 
Schedules

Risk P(t>tmode)
L 1.15 0.65
M 1.25 0.75
H 1.50 0.85

Ratio Of 
Mode to 

MinRisk

Ratio Of 
Mode to 

Min P(t>tmode)
L 1.15 0.60
M 1.25 0.70
H 1.50 0.80

• Gladstone, B. and Miller, S. (2002), “Chemical Demilitarization Program 
Schedule Risk Assesment,” 35th Annual DoD Cost Analysis 
Symposium, Williamsburg, Virginia
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Simulation Results of Coriolis GAN
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• Simulation produces full distribution of outcomes
• Can identify likely duration at any specified confidence level

– Typically use Expected Value, 50% and 80%
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Findings

Model

Estimated 
Duration 
(Mths)

Estimated 
Schedule 

Slip (Mths)

Estimated 
Schedule 
Slip (%)

Actual 
Estimation 
Error (%)

Model 1 47.0 14.0 42.4% 5.6%
Model 2 47.8 14.8 44.8% 7.4%
Model 3 70.1 37.1 112.4% 57.5%
Model 4 68.8 35.8 108.5% 54.6%

GAN Model
Mean 47.9 14.9 45.2% 7.6%

50% CDF 44.5 11.5 34.8% 0.0%
80% CDF 56.1 23.1 70.0% 26.1%

Duration Slip (Mths) Slip (%)
Actual 44.5 11.5 34.8%

Model 5 48.3 15.3 46.4% 8.5%

• Must discount Model 1 results as chance
• GAN and Models 2 and 5 perform well relative to actual 

duration; all model predictions are upward biased
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Findings

• GAN & SER Models 2 and 5 perform very well 
• SER Models 3 & 4 perform poorly

– Possible explanation?
– Coriolis not representative of other satellites in sample

• Different acquisition strategy
• Micro-satellite development
• Mature COTS bus
• Separate, wholly independent payloads

• GAN models and SERs are good complements
– Serve as cross-checks
– Can use SERs early when program is ill-defined
– As program is better understood, GANs can provide additional 

insight and information beyond estimate
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Conclusion

• GAN models increasing in popularity among cost analysts
– Powerful, easy to model simulations for estimation
– Explicitly models risk and uncertainty
– Provides additional managerial information as program evolves and 

GAN model is refined

• Case study indicates that GAN models perform at least as well 
as traditional regression-based methods
– Further research for different commodities and test-block GANs
– Need to investigate objective, data-driven calibrations for 

cost/duration distributions
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Calibrating GAN Probabilities

• We consider two common GAN feedback processes

– The One “P” Case
• Single feedback loop with a constant probability of success
• Preliminary results included in MORS presentation 

– The Two “P” Case
• Successive attempts after the first failure possess a constant, 

but higher, probability of success that the first test trial
• Presumes that most of the major problems are at least identified

after recovery from initial failure implying a higher probability of 
success for subsequent trials
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GAN Probabilities: One “P” Case

Rework

Work
PFail

PPass

Finalize

Rework

Work
PFail

PPass

Finalize

• Typically, probabilities of success or failure driven by expert 
opinion

• Probabilities can be appropriately calibrated by historical data
• Assumptions

– Well defined, common test event for commodity/system
– Access to historical data from similar systems 
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GAN Probabilities: One “P” Case

• Considering simple test-block GAN:
– Trials occur until a success is achieved (with probability P for each 

trial)
– Let X be the number of trials until the first success
– X is a geometric random variable with parameter P
– Specifically,

[ ]
p

XE 1
=

• Assuming historical data (of sample size n) on number of trials 
from similar systems can solve for single p* that minimizes the 
sum of squared errors between the expected number of trials 
predicted by the GAN, E[X] ,and the historical data
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GAN Probabilities: One “P” Case

• Thus, if 
*
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p

x = },...,,,{ 321 nbbbband
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One “P” Case: Proof

• Since our problem is only over one dimension, we can simply 
consider looking at the derivative of the function with respect to 
x

∑∑ ∑∑
== ==

+−=+−=−
n

i
i

n

i

n

i
iii

n

i
i bbxnxbxbxbx

1

2

1 1

222

1

2 2)2()(

• Taking the derivative of this expression and setting it to zero, we 
get that:

n

b
xbnx
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• Thus, we can estimate p* by simply by taking the inverse of the 
average of the outcomes of the trials
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GAN Probabilities: One “P” Case

• This simple, straightforward result is powerful because analysts
can easily objectively calibrate GAN probabilities

• Further, in absence of historical data, analysts should seek
– Unbiased expert opinion on “average” number of tests until success
– Should produce better estimates of realistic probability of success 

than directly asking for them



P A G E  49

GAN Probabilities: Two “P” Case

Test

Retest

Rework

P 1

P2Test

• Probability of success on first test: P1

• Probability of success on every other test, conditional on first 
test failing:  P2
– Might expect P2>P1 due to knowledge of what failed, additional 

effort spent on that item, etc.
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GAN Probabilities: Two “P” Case

• Consider a test event with the following historical data: 

Historical 
Program 

# Trials 
until 

Success

1st Trial 
Success? 

(Yes=1, No=0)

2nd Trial? 
(Did the 1st 
trial fail?)

# of "P2" 
Trials

1 6 0 1 5
2 7 0 1 6
3 4 0 1 3
4 1 1 0 0
5 8 0 1 7
6 1 1 0 0
7 2 0 1 1
8 1 1 0 0
9 12 0 1 11
10 4 0 1 3

• We could calculate a single probability, p, using the previous 
technique
– Method of calibrating P1 and P2 should reduce to One “P” case if 

probabilities are constant
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GAN Probabilities: Two “P” Case

• Let x1 and x2 be decision variables and

• Let if the first trial failed and if it succeeded and 
assume that there are J successes.

• Let represent the number of subsequent trials with a 
probability, p2 ,of success

• As before, we wish to minimize the sum of squared errors 
between the expected number of trials predicted by the GAN 
and the historical data for each decision node:

∑∑ −+−
j

j
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GAN Probabilities: Two “P” Case

• We can minimize each sum separately, yielding x1 and x2 , and 
thus our P1 and P2

• Using the data from our example we produce the probabilities: 

• Monte Carlo testing demonstrates method to provide robust 
estimation of data generating process even when P1 = P2

3.011 == xP

1944.0
7

36
11

2
2 ===

x
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GAN Probabilities: Small Data Samples

• Calibrated probabilities are sensitive to sample size 
of available data
– Acquisition data rarely possess sufficient sample size to 

appeal to asymptotic properties
• Currently examining the appropriate calculation of 

confidence intervals for calibrated probabilities
– Monte Carlo testing with different sample sizes
– Analytical derivation of confidence intervals of P1 and P2
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